Math 221: LINEAR ALGEBRA

Chapter 6. Vector Spaces §6-1. Examples and Basic Properties

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

Example one – Matrices

Example Two – Polynomials

More Examples

Example one – Matrices

Example Two - Polynomials

More Examples

1. \mathbb{R}^n

2. Polynomials of order at most n:

$$\{a_0+a_1x+\cdots+a_nx^n|a_i\in\mathbb{R},\ i=1,\cdots,n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
- 5. The set of functions on [0, 1] having nth continuous derivatives, i.e., $C^{n}([0, 1])$.
 - : :

1. \mathbb{R}^n

2. Polynomials of order at most n:

$$\{a_0+a_1x+\cdots+a_nx^n|a_i\in\mathbb{R},\ i=1,\cdots,n\}$$

- 3. The set of $m \times n$ matrices.
- 4. The set of continuous functions on [0, 1], i.e., C([0, 1]).
- 5. The set of functions on [0, 1] having nth continuous derivatives, i.e., $C^{n}([0, 1])$.
- : :

Definition (Vector Space)

Let V be a nonempty set of objects with two operations: vector addition and scalar multiplication. Then V is called a vector space if it satisfies the following Axioms of Addition and the Axioms of Scalar Multiplication. The elements of V are called vectors.

Definition (continued – Axioms of ADDITION)

- A1. V is closed under addition. $\mathbf{v}, \mathbf{w} \in V \implies \mathbf{u} + \mathbf{v} \in V$
- A2. Addition is commutative. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.
- A3. Addition is associative. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \text{ for all } \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}.$
- A4. Existence of an additive identity. There exists an element 0 in V so that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- A5. Existence of an additive inverse. For each $\mathbf{u} \in V$ there exists an element $-\mathbf{u} \in V$ so that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

Definition (continued – Axioms of SCALAR MULTIPLICATION)

- S1. V is closed under scalar multiplication. $\mathbf{v} \in V$ and $\mathbf{k} \in \mathbb{R}$, \Longrightarrow $\mathbf{kv} \in V$.
- S2. Scalar multiplication distributes over vector addition. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ for all $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$.
- S3. Scalar multiplication distributes over scalar addition. $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ for all $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$.
- S4. Scalar multiplication is associative. $a(b\mathbf{u}) = (ab)\mathbf{u}$ for all $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$.
- S5. Existence of a multiplicative identity for scalar multiplication. $1\mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in V$.

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem

Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, and $\mathbf{a} \in \mathbb{R}$.

1. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem

- 1. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 2. The equation $\mathbf{x} + \mathbf{v} = \mathbf{u}$, has a unique solution $\mathbf{x} \in V$ given by $\mathbf{x} = \mathbf{u} \mathbf{v}$.

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem

- 1. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 2. The equation $\mathbf{x} + \mathbf{v} = \mathbf{u}$, has a unique solution $\mathbf{x} \in V$ given by $\mathbf{x} = \mathbf{u} \mathbf{v}$.
- 3. $a\mathbf{v} = \mathbf{0}$ if and only if $\mathbf{a} = 0$ or $\mathbf{v} = \mathbf{0}$.

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem

- 1. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 2. The equation $\mathbf{x} + \mathbf{v} = \mathbf{u}$, has a unique solution $\mathbf{x} \in V$ given by $\mathbf{x} = \mathbf{u} \mathbf{v}$.
- 3. $a\mathbf{v} = \mathbf{0}$ if and only if $\mathbf{a} = 0$ or $\mathbf{v} = \mathbf{0}$.
- 4. $(-1)\mathbf{v} = -\mathbf{v}$.

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in V$. The difference of \mathbf{u} and \mathbf{v} is defined as

 $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem

- 1. If $\mathbf{u} + \mathbf{v} = \mathbf{u} + \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 2. The equation $\mathbf{x} + \mathbf{v} = \mathbf{u}$, has a unique solution $\mathbf{x} \in V$ given by $\mathbf{x} = \mathbf{u} \mathbf{v}$.
- 3. $a\mathbf{v} = \mathbf{0}$ if and only if $\mathbf{a} = 0$ or $\mathbf{v} = \mathbf{0}$.
- 4. $(-1)\mathbf{v} = -\mathbf{v}$.
- 5. $(-\mathbf{a})\mathbf{v} = -(\mathbf{a}\mathbf{v}) = \mathbf{a}(-\mathbf{v}).$

Example one – Matrices

Example Two – Polynomials

More Examples

Example One – Matrices

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example One – Matrices

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example

 $M_{\rm mn},$ the set of all m \times n matrices (of real numbers) with matrix addition and scalar multiplication is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example One – Matrices

Example

 \mathbb{R}^n with matrix addition and scalar multiplication is a vector space.

Example

 \mathbf{M}_{mn} , the set of all m \times n matrices (of real numbers) with matrix addition and scalar multiplication is a vector space. It is left as an exercise to verify the ten vector space axioms.

Remark

- 1. Notation: the $m \times n$ matrix of all zeros is written 0 or, when the size of the matrix needs to be emphasized, 0_{mn} .
- 2. The vector space \mathbf{M}_{mn} "is the same as" the vector space \mathbb{R}^{mn} . We will make this notion more precise later on. For now, notice that an $m \times n$ matrix has mn entries arranged in m rows and n columns, while a vector in \mathbb{R}^{mn} has mn entries arranged in mn rows and 1 column.

$\operatorname{Problem}$

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathbf{M}_{22} \ \left| \begin{array}{c} a + b + c + d = 0 \end{array} \right\}.$$

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathbf{M}_{22} \ \middle| \ a + b + c + d = 0 \right\}.$$

Since we are using the matrix addition and scalar multiplication of M_{22} , it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22} . Show that V is a vector space.

Solution

The matrices in V may be described as follows:

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \boldsymbol{M}_{22} \ \middle| \ a + b + c + d = 0 \right\}.$$

Since we are using the matrix addition and scalar multiplication of M_{22} , it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

What needs to be shown is closure under addition (for all $\mathbf{v}, \mathbf{w} \in V$, $\mathbf{v} + \mathbf{w} \in V$), and closure under scalar multiplication (for all $\mathbf{v} \in V$ and $\mathbf{k} \in \mathbb{R}$, $\mathbf{k}\mathbf{v} \in V$), as well as showing the existence of an additive identity and additive inverses in the set V.

Closure under addition: Suppose

$$A = \begin{bmatrix} w_1 & x_1 \\ y_1 & z_1 \end{bmatrix} \text{ and } B = \begin{bmatrix} w_2 & x_2 \\ y_2 & x_2 \end{bmatrix}$$

are in V. Then $w_1 + x_1 + y_1 + z_1 = 0$, $w_2 + x_2 + y_2 + z_2 = 0$, and

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{x}_1 \\ \mathbf{y}_1 & \mathbf{z}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{w}_2 & \mathbf{x}_2 \\ \mathbf{y}_2 & \mathbf{z}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1 + \mathbf{w}_2 & \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{y}_1 + \mathbf{y}_2 & \mathbf{z}_1 + \mathbf{z}_2 \end{bmatrix}$$

Since

$$\begin{split} & (w_1+w_2)+(x_1+x_2)+(y_1+y_2)+(z_1+z_2) \\ & = (w_1+x_1+y_1+z_1)+(w_2+x_2+y_2+z_2) \\ & = 0+0=0, \end{split}$$

A + B is in V, so V is closed under addition.

► Closure under scalar multiplication: Suppose $A = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ is in V and $k \in \mathbb{R}$. Then w + x + y + z = 0, and

$$\mathbf{k}\mathbf{A} = \mathbf{k} \left[\begin{array}{cc} \mathbf{w} & \mathbf{x} \\ \mathbf{y} & \mathbf{z} \end{array} \right] = \left[\begin{array}{cc} \mathbf{k}\mathbf{w} & \mathbf{k}\mathbf{x} \\ \mathbf{k}\mathbf{y} & \mathbf{k}\mathbf{z} \end{array} \right].$$

Since

$$\mathbf{k}\mathbf{w} + \mathbf{k}\mathbf{x} + \mathbf{k}\mathbf{y} + \mathbf{k}\mathbf{z} = \mathbf{k}(\mathbf{w} + \mathbf{x} + \mathbf{y} + \mathbf{z}) = \mathbf{k}(\mathbf{0}) = \mathbf{0},$$

kA is in V, so V is closed under scalar multiplication.

Existence of an additive identity: The additive identity of M_{22} is the 2×2 matrix of zeros,

$$\mathbf{0} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right];$$

Since 0 + 0 + 0 = 0, **0** is in V, and has the required property (as it does in M_{22}).

• Existence of an additive inverse: Let $A = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ be in V. Then w + x + y + z = 0, and its additive inverse in \mathbf{M}_{22} is

$$-\mathbf{A} = \begin{bmatrix} -\mathbf{w} & -\mathbf{x} \\ -\mathbf{y} & -\mathbf{z} \end{bmatrix}.$$

Since

$$(-w) + (-x) + (-y) + (-z) = -(w + x + y + x) = -0 = 0,$$

-A is in V and has the required property (as it does in M_{22}).

$\operatorname{Problem}$

Let

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \ \left| \begin{array}{cc} a, b, c, d \in \mathbb{R} & \text{and} & \det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = 0. \right\}.$$

We use the usual addition and scalar multiplication of $M_{\rm 22}.$ Show that V is NOT a vector space.

Let

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \ \left| \begin{array}{cc} a, b, c, d \in \mathbb{R} & \text{and} & \det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = 0. \right\}.$$

We use the usual addition and scalar multiplication of M_{22} . Show that V is NOT a vector space.

Solution

We need to find a counter example that violates some axioms. Indeed, if

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] \quad \text{and} \quad \mathbf{B} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right],$$

then det(A) = 0 and det(B) = 0, so $A, B \in V$.

Let

$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \ \left| \begin{array}{cc} a, b, c, d \in \mathbb{R} & \text{and} & \det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = 0. \right\}.$$

We use the usual addition and scalar multiplication of M_{22} . Show that V is NOT a vector space.

Solution

We need to find a counter example that violates some axioms. Indeed, if

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] \quad \text{and} \quad \mathbf{B} = \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right],$$

then det(A) = 0 and det(B) = 0, so $A, B \in V$. However,

$$\mathbf{A} + \mathbf{B} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right],$$

and det(A + B) = -1, so $A + B \notin V$, i.e., V is not closed under addition.

Example one – Matrices

Example Two – Polynomials

More Examples

Example Two – Polynomials

Example Two – Polynomials

Definition

Let $\mathcal P$ be the set of all polynomials in x, with real coefficients, and let $p\in \mathcal P.$ Then

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

for some integer n.

Example Two – Polynomials

Definition

Let $\mathcal P$ be the set of all polynomials in x, with real coefficients, and let $p\in \mathcal P.$ Then

$$p(x) = \sum_{i=0}^n a_i x$$

for some integer n.

The degree of p is the highest power of x with a nonzero coefficient. Note that p(x) = 0 has undefined degree.

Definition (continued)

▶ Addition. Suppose $p, q \in \mathcal{P}$. Then

$$p(x)=\sum_{i=0}^n a_i x^i \quad \text{and} \quad q(x)=\sum_{i=0}^m b_i x^i.$$

We may assume, without loss of generality, that $n\geq m;$ for $j=m+1,m+2,\ldots,n-1,n,$ we define $b_j=0.$ Then

$$(p+q)(x) = p(x) + q(x) = \sum_{i=0}^{n} (a_i x^i + b_i x^i) = \sum_{i=0}^{n} (a_i + b_i) x^i.$$

Definition (continued)

▶ Addition. Suppose $p, q \in \mathcal{P}$. Then

$$p(x)=\sum_{i=0}^n a_i x^i \quad \text{and} \quad q(x)=\sum_{i=0}^m b_i x^i.$$

We may assume, without loss of generality, that $n \ge m$; for $j = m + 1, m + 2, \ldots, n - 1, n$, we define $b_j = 0$. Then

$$(p+q)(x) = p(x) + q(x) = \sum_{i=0}^{n} (a_i x^i + b_i x^i) = \sum_{i=0}^{n} (a_i + b_i) x^i.$$

Remark

Note that this definition ensures that \mathcal{P} is closed under addition.

Definition (continued)

▶ Scalar Multiplication. Suppose $p \in \mathcal{P}$ and $k \in \mathbb{R}$. Then

$$p(x) = \sum_{i=0}^{n} a_i x^i,$$

and

$$(kp)(x)=k(p(x))=\sum_{i=0}^n k(a_ix^i)=\sum_{i=0}^n (ka_i)x^i.$$

Definition (continued)

▶ Scalar Multiplication. Suppose $p \in \mathcal{P}$ and $k \in \mathbb{R}$. Then

$$p(x) = \sum_{i=0}^{n} a_i x^i,$$

and

$$(kp)(x) = k(p(x)) = \sum_{i=0}^n k(a_i x^i) = \sum_{i=0}^n (ka_i) x^i.$$

▶ The zero polynomial is denoted **0**. Note that $\mathbf{0} = 0$, but we use **0** to emphasize that it is the zero vector of \mathcal{P} .

Definition (continued)

▶ Scalar Multiplication. Suppose $p \in \mathcal{P}$ and $k \in \mathbb{R}$. Then

$$p(x) = \sum_{i=0}^{n} a_i x^i,$$

and

$$(kp)(x) = k(p(x)) = \sum_{i=0}^n k(a_i x^i) = \sum_{i=0}^n (ka_i) x^i.$$

▶ The zero polynomial is denoted **0**. Note that $\mathbf{0} = 0$, but we use **0** to emphasize that it is the zero vector of \mathcal{P} .

Remark

Note that this definition ensures that \mathcal{P} is closed under scalar multiplication.

Example

The set of polynomials \mathcal{P} , with addition and scalar multiplication as defined, is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example

The set of polynomials \mathcal{P} , with addition and scalar multiplication as defined, is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example

For $n \geq 1$, let \mathcal{P}_n denote the set of all polynomials of degree at most n, along with the zero polynomial, with addition and scalar multiplication as in \mathcal{P} , i.e.,

$$\mathcal{P}_n = \left\{ a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n \mid a_0, a_1, a_2, \dots, a_{n-1}, a_n \in \mathbb{R} \right\}.$$

Then \mathcal{P}_n is a vector space, and it is left as an exercise to verify the \mathcal{P}_n is closed under addition and scalar multiplication, and satisfies the ten vector space axioms.

What is a vector space?

Example one – Matrices

Example Two – Polynomials

More Examples

Problem

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

Problem

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

1. Addition. $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$

Problem

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- 1. Addition. $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- 2. Scalar Multiplication. $a\odot(x_1,y_1)=(ax_1,ay_1+a-1).$

Problem

Let $V = \{(x, y) \mid x, y \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $(x_1, y_1), (x_2, y_2) \in V$, and $a, b \in \mathbb{R}$:

- 1. Addition. $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + 1).$
- 2. Scalar Multiplication. $a \odot (x_1, y_1) = (ax_1, ay_1 + a 1).$

Show that V, with addition and scalar multiplication as defined, is a vector space.

1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?
- 4. What is the additive inverse of $(x, y) \in V$?

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?
- 4. What is the additive inverse of $(x, y) \in V$?
- 5. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1)).$

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?
- 4. What is the additive inverse of $(x, y) \in V$?
- 5. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1)).$
- 6. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?
- 4. What is the additive inverse of $(x, y) \in V$?
- 5. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1)).$
- 6. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$
- 7. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.

- 1. It is clear that V is closed under \oplus and \odot , since both operations produce ordered pairs of real numbers.
- 2. It is routine to verify that \oplus is commutative and associative.
- 3. What is the additive identity?
- 4. What is the additive inverse of $(x, y) \in V$?
- 5. Verify that $(a + b) \odot (x_1, y_1) = (a \odot (x_1, y_1)) \oplus (b \odot (x_1, y_1)).$
- 6. Verify that $a \odot ((x_1, y_1) \oplus (x_2, y_2)) = (a \odot (x_1, y_1)) \oplus (a \odot (x_2, y_2)).$
- 7. Verify that $a \odot (b \odot (x_1, y_1)) = (ab) \odot (x_1, y_1)$.
- 8. Verify that $1 \odot (x, y) = (x, y)$.

$\operatorname{Problem}$

Let \mathbb{R}_+ be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

Let \mathbb{R}_+ be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

1. Addition. $x \oplus y = xy$.

Let \mathbb{R}_+ be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x,y\in\mathbb{R}_+,$ and $a\in\mathbb{R}:$

- 1. Addition. $x \oplus y = xy$.
- 2. Scalar Multiplication. $a \odot x = x^a$.

Let \mathbb{R}_+ be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

- 1. Addition. $x \oplus y = xy$.
- 2. Scalar Multiplication. $a \odot x = x^a$.

Prove that \mathbb{R}_+ equipped with \oplus and \odot is a vector space.

Let \mathbb{R}_+ be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $x, y \in \mathbb{R}_+$, and $a \in \mathbb{R}$:

- 1. Addition. $x \oplus y = xy$.
- 2. Scalar Multiplication. $a \odot x = x^a$.

Prove that \mathbb{R}_+ equipped with \oplus and \odot is a vector space.

Proof.

Verify ten properties in the Axioms!

- 1. Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- 2. Let $C^{n}([0, 1])$ be the set of functions that have continuous nth derivatives $(n \geq 0)$ defined on [0, 1], equipped with usual addition and scalar multiplication. Prove that $C^{n}([0, 1])$ is a vector space.

- 1. Let C([0,1]) be the set of continuous functions defined on [0,1] equipped with usual addition and scalar multiplication. Prove that C([0,1]) is a vector space.
- 2. Let $C^{n}([0, 1])$ be the set of functions that have continuous nth derivatives $(n \geq 0)$ defined on [0, 1], equipped with usual addition and scalar multiplication. Prove that $C^{n}([0, 1])$ is a vector space.

Proof.

Verify ten properties in the Axioms!