Math 221: LINEAR ALGEBRA

Chapter 6. Vector Spaces §6-1. Examples and Basic Properties

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

What is a vector space?

Example one - Matrices

Example Two - Polynomials

More Examples

What is a vector space?

Example one - Matrices

Example Two - Polynomials

More Examples

What is a vector space?

What is a vector space?

1. \mathbb{R}^{n}
2. Polynomials of order at most n :

$$
\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}, i=1, \cdots, n\right\}
$$

3. The set of $m \times n$ matrices.
4. The set of continuous functions on $[0,1]$, i.e., $\mathrm{C}([0,1])$.

5 . The set of functions on $[0,1]$ having nth continuous derivatives, i.e., $\mathrm{C}^{\mathrm{n}}([0,1])$.

$$
\vdots
$$

What is a vector space?

1. \mathbb{R}^{n}
2. Polynomials of order at most n:

$$
\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}, i=1, \cdots, n\right\}
$$

3 . The set of $m \times n$ matrices.
4. The set of continuous functions on $[0,1]$, i.e., $\mathrm{C}([0,1])$.
5. The set of functions on $[0,1]$ having nth continuous derivatives, i.e., $\mathrm{C}^{\mathrm{n}}([0,1])$.

Definition (Vector Space)

Let V be a nonempty set of objects with two operations: vector addition and scalar multiplication. Then V is called a vector space if it satisfies the following Axioms of Addition and the Axioms of Scalar Multiplication. The elements of V are called vectors.

Definition (continued - Axioms of ADDITION)

A1. V is closed under addition.
$\mathbf{v}, \mathbf{w} \in \mathrm{V} \quad \Longrightarrow \quad \mathbf{u}+\mathbf{v} \in \mathrm{V}$

A2. Addition is commutative.
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.

A3. Addition is associative.
$(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$.

A4. Existence of an additive identity. There exists an element $\mathbf{0}$ in V so that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in \mathrm{V}$.

A5. Existence of an additive inverse. For each $\mathbf{u} \in \mathrm{V}$ there exists an element $-\mathbf{u} \in \mathrm{V}$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.

Definition (continued - Axioms of SCALAR MULTIPLICATION)

S1. V is closed under scalar multiplication. $\mathbf{v} \in \mathrm{V}$ and $\mathrm{k} \in \mathbb{R}, \Longrightarrow \mathrm{kv} \in \mathrm{V}$.

S2. Scalar multiplication distributes over vector addition. $a(\mathbf{u}+\mathbf{v})=\mathrm{au}+\mathrm{av}$ for all $\mathrm{a} \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$.

S3. Scalar multiplication distributes over scalar addition. $(a+b) \mathbf{u}=a \mathbf{u}+\mathrm{bu}$ for all $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ and $\mathbf{u} \in \mathrm{V}$.

S4. Scalar multiplication is associative. $a(b \mathbf{u})=(a b) \mathbf{u}$ for all $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$.

S5. Existence of a multiplicative identity for scalar multiplication. $1 \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$.

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $\mathbf{-} \mathbf{v}$ is the additive inverse of \mathbf{v}).

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem
Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$, and $\mathrm{a} \in \mathbb{R}$.

1. If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $-\mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem
Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$, and $\mathrm{a} \in \mathbb{R}$.

1. If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.
2. The equation $\mathbf{x}+\mathbf{v}=\mathbf{u}$, has a unique solution $\mathbf{x} \in \mathrm{V}$ given by $\mathrm{x}=\mathrm{u}-\mathrm{v}$.

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $\mathbf{-} \mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem
Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$, and $\mathrm{a} \in \mathbb{R}$.

1. If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.
2. The equation $\mathbf{x}+\mathbf{v}=\mathbf{u}$, has a unique solution $\mathbf{x} \in \mathrm{V}$ given by $\mathrm{x}=\mathrm{u}-\mathrm{v}$.
3. $\mathbf{a v}=\mathbf{0}$ if and only if $\mathrm{a}=0$ or $\mathbf{v}=\mathbf{0}$.

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $\mathbf{-} \mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem
Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$, and $\mathrm{a} \in \mathbb{R}$.

1. If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.
2. The equation $\mathbf{x}+\mathbf{v}=\mathbf{u}$, has a unique solution $\mathbf{x} \in \mathrm{V}$ given by $\mathrm{x}=\mathrm{u}-\mathrm{v}$.
3. $\mathbf{a v}=\mathbf{0}$ if and only if $\mathrm{a}=0$ or $\mathbf{v}=\mathbf{0}$.
4. $(-1) \mathrm{v}=-\mathrm{v}$.

Definition (Vector Difference)

Let V be a vector space and $\mathbf{u}, \mathbf{v} \in \mathrm{V}$. The difference of \mathbf{u} and \mathbf{v} is defined as

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})
$$

(where $\mathbf{-} \mathbf{v}$ is the additive inverse of \mathbf{v}).

Theorem
Let V be a vector space, $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$, and $\mathrm{a} \in \mathbb{R}$.

1. If $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.
2. The equation $\mathbf{x}+\mathbf{v}=\mathbf{u}$, has a unique solution $\mathbf{x} \in \mathrm{V}$ given by $\mathrm{x}=\mathrm{u}-\mathrm{v}$.
3. $\mathbf{a v}=\mathbf{0}$ if and only if $\mathrm{a}=0$ or $\mathbf{v}=\mathbf{0}$.
4. $(-1) \mathrm{v}=-\mathrm{v}$.
5. $(-\mathrm{a}) \mathbf{v}=-(\mathrm{av})=\mathrm{a}(-\mathbf{v})$.

What is a vector space?

Example one - Matrices

Example Two - Polynomials

More Examples

Example One - Matrices

Example

\mathbb{R}^{n} with matrix addition and scalar multiplication is a vector space.

Example One - Matrices

Example

\mathbb{R}^{n} with matrix addition and scalar multiplication is a vector space.

Example

\mathbf{M}_{mn}, the set of all $\mathrm{m} \times \mathrm{n}$ matrices (of real numbers) with matrix addition and scalar multiplication is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example One - Matrices

Example

\mathbb{R}^{n} with matrix addition and scalar multiplication is a vector space.

Example

\mathbf{M}_{mn}, the set of all $\mathrm{m} \times \mathrm{n}$ matrices (of real numbers) with matrix addition and scalar multiplication is a vector space. It is left as an exercise to verify the ten vector space axioms.

Remark

1. Notation: the $m \times n$ matrix of all zeros is written $\mathbf{0}$ or, when the size of the matrix needs to be emphasized, $\mathbf{0}_{\mathrm{mn}}$.
2. The vector space \mathbf{M}_{mn} "is the same as" the vector space \mathbb{R}^{mn}. We will make this notion more precise later on. For now, notice that an $m \times n$ matrix has mn entries arranged in m rows and n columns, while a vector in \mathbb{R}^{mn} has mn entries arranged in mn rows and 1 column.

Problem

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of M_{22}. Show that V is a vector space.

Problem

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of \mathbf{M}_{22}. Show that V is a vector space.

Solution
The matrices in V may be described as follows:

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \in \mathbf{M}_{22} \right\rvert\, \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\right\} .
$$

Problem

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of \mathbf{M}_{22}. Show that V is a vector space.

Solution
The matrices in V may be described as follows:

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \in \mathbf{M}_{22} \right\rvert\, \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\right\} .
$$

Since we are using the matrix addition and scalar multiplication of \mathbf{M}_{22}, it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

Problem

Let V be the set of all 2×2 matrices of real numbers whose entries sum to zero. We use the usual addition and scalar multiplication of \mathbf{M}_{22}. Show that V is a vector space.

Solution
The matrices in V may be described as follows:

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \in \mathrm{M}_{22} \right\rvert\, \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0\right\} .
$$

Since we are using the matrix addition and scalar multiplication of \mathbf{M}_{22}, it is automatic that addition is commutative and associative, and that scalar multiplication satisfies the two distributive properties, the associative property, and has 1 as an identity element.

What needs to be shown is closure under addition (for all $\mathbf{v}, \mathbf{w} \in \mathrm{V}$, $\mathbf{v}+\mathbf{w} \in \mathrm{V}$), and closure under scalar multiplication (for all $\mathbf{v} \in \mathrm{V}$ and $\mathrm{k} \in \mathbb{R}, \mathrm{kv} \in \mathrm{V}$), as well as showing the existence of an additive identity and additive inverses in the set V .

Solution (continued)

- Closure under addition: Suppose

$$
A=\left[\begin{array}{ll}
\mathrm{w}_{1} & \mathrm{x}_{1} \\
\mathrm{y}_{1} & \mathrm{z}_{1}
\end{array}\right] \quad \text { and } \quad \mathrm{B}=\left[\begin{array}{ll}
\mathrm{w}_{2} & \mathrm{x}_{2} \\
\mathrm{y}_{2} & \mathrm{x}_{2}
\end{array}\right]
$$

are in V. Then $\mathrm{w}_{1}+\mathrm{x}_{1}+\mathrm{y}_{1}+\mathrm{z}_{1}=0$, $\mathrm{w}_{2}+\mathrm{x}_{2}+\mathrm{y}_{2}+\mathrm{z}_{2}=0$, and

$$
\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}
\mathrm{w}_{1} & \mathrm{x}_{1} \\
\mathrm{y}_{1} & \mathrm{z}_{1}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{w}_{2} & \mathrm{x}_{2} \\
\mathrm{y}_{2} & \mathrm{z}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{w}_{1}+\mathrm{w}_{2} & \mathrm{x}_{1}+\mathrm{x}_{2} \\
\mathrm{y}_{1}+\mathrm{y}_{2} & \mathrm{z}_{1}+\mathrm{z}_{2}
\end{array}\right] .
$$

Since

$$
\begin{aligned}
& \left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)+\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)+\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right) \\
& =\left(\mathrm{w}_{1}+\mathrm{x}_{1}+\mathrm{y}_{1}+\mathrm{z}_{1}\right)+\left(\mathrm{w}_{2}+\mathrm{x}_{2}+\mathrm{y}_{2}+\mathrm{z}_{2}\right) \\
& =0+0=0
\end{aligned}
$$

$\mathrm{A}+\mathrm{B}$ is in V , so V is closed under addition.

Solution (continued)

- Closure under scalar multiplication: Suppose $A=\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]$ is in V and $\mathrm{k} \in \mathbb{R}$. Then $\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z}=0$, and

$$
\mathrm{kA}=\mathrm{k}\left[\begin{array}{cc}
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{kw} & \mathrm{kx} \\
\mathrm{ky} & \mathrm{kz}
\end{array}\right] .
$$

Since

$$
\mathrm{kw}+\mathrm{kx}+\mathrm{ky}+\mathrm{kz}=\mathrm{k}(\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z})=\mathrm{k}(0)=0,
$$

kA is in V , so V is closed under scalar multiplication.

Solution (continued)

- Existence of an additive identity: The additive identity of \mathbf{M}_{22} is the 2×2 matrix of zeros,

$$
\mathbf{0}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] ;
$$

Since $0+0+0+0=0,0$ is in V, and has the required property (as it does in \mathbf{M}_{22}).

Solution (continued)

- Existence of an additive inverse: Let $\mathrm{A}=\left[\begin{array}{ll}\mathrm{w} & \mathrm{x} \\ \mathrm{y} & \mathrm{z}\end{array}\right]$ be in V . Then $\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z}=0$, and its additive inverse in \mathbf{M}_{22} is

$$
-\mathrm{A}=\left[\begin{array}{cc}
-\mathrm{w} & -\mathrm{x} \\
-\mathrm{y} & -\mathrm{z}
\end{array}\right]
$$

Since

$$
(-\mathrm{w})+(-\mathrm{x})+(-\mathrm{y})+(-\mathrm{z})=-(\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{x})=-0=0
$$

-A is in V and has the required property (as it does in M_{22}).

Problem
Let

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbb{R} \quad \text { and } \quad \operatorname{det}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=0 .\right\} .
$$

We use the usual addition and scalar multiplication of M_{22}. Show that V is NOT a vector space.

Problem
Let

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbb{R} \quad \text { and } \quad \operatorname{det}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=0 .\right\} .
$$

We use the usual addition and scalar multiplication of M_{22}. Show that V is NOT a vector space.

Solution
We need to find a counter example that violates some axioms. Indeed, if

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

then $\operatorname{det}(\mathrm{A})=0$ and $\operatorname{det}(\mathrm{B})=0$, so $\mathrm{A}, \mathrm{B} \in \mathrm{V}$.

Problem

Let

$$
\mathrm{V}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbb{R} \quad \text { and } \quad \operatorname{det}\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=0 .\right\} .
$$

We use the usual addition and scalar multiplication of \mathbf{M}_{22}. Show that V is NOT a vector space.

Solution
We need to find a counter example that violates some axioms. Indeed, if

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

then $\operatorname{det}(\mathrm{A})=0$ and $\operatorname{det}(\mathrm{B})=0$, so $\mathrm{A}, \mathrm{B} \in \mathrm{V}$. However,

$$
\mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right],
$$

and $\operatorname{det}(\mathrm{A}+\mathrm{B})=-1$, so $\mathrm{A}+\mathrm{B} \notin \mathrm{V}$, i.e., V is not closed under addition.

What is a vector space?

Example one - Matrices

Example Two - Polynomials

More Examples

Example Two - Polynomials

Example Two - Polynomials

Definition

Let \mathcal{P} be the set of all polynomials in x , with real coefficients, and let $\mathrm{p} \in \mathcal{P}$. Then

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

for some integer n .

Example Two - Polynomials

Definition

Let \mathcal{P} be the set of all polynomials in x , with real coefficients, and let $\mathrm{p} \in \mathcal{P}$. Then

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

for some integer n .

- The degree of p is the highest power of x with a nonzero coefficient. Note that $\mathrm{p}(\mathrm{x})=0$ has undefined degree.

Definition (continued)

- Addition. Suppose $\mathrm{p}, \mathrm{q} \in \mathcal{P}$. Then

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i} \quad \text { and } \quad q(x)=\sum_{i=0}^{m} b_{i} x^{i} .
$$

We may assume, without loss of generality, that $\mathrm{n} \geq \mathrm{m}$; for $j=m+1, m+2, \ldots, n-1, n$, we define $b_{j}=0$. Then

$$
(\mathrm{p}+\mathrm{q})(\mathrm{x})=\mathrm{p}(\mathrm{x})+\mathrm{q}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{i}} .
$$

Definition (continued)

- Addition. Suppose $\mathrm{p}, \mathrm{q} \in \mathcal{P}$. Then

$$
\mathrm{p}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \text { and } \mathrm{q}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{m}} \mathrm{~b}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} .
$$

We may assume, without loss of generality, that $\mathrm{n} \geq \mathrm{m}$; for $j=m+1, m+2, \ldots, n-1, n$, we define $b_{j}=0$. Then

$$
(p+q)(x)=p(x)+q(x)=\sum_{i=0}^{n}\left(a_{i} x^{i}+b_{i} x^{i}\right)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i} .
$$

Remark

Note that this definition ensures that \mathcal{P} is closed under addition.

Definition (continued)

- Scalar Multiplication. Suppose $\mathrm{p} \in \mathcal{P}$ and $\mathrm{k} \in \mathbb{R}$. Then

$$
\mathrm{p}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}},
$$

and

$$
(\mathrm{kp})(\mathrm{x})=\mathrm{k}(\mathrm{p}(\mathrm{x}))=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{k}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{k} \mathrm{a}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{i}} .
$$

Definition (continued)

- Scalar Multiplication. Suppose $\mathrm{p} \in \mathcal{P}$ and $\mathrm{k} \in \mathbb{R}$. Then

$$
\mathrm{p}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}},
$$

and

$$
(\mathrm{kp})(\mathrm{x})=\mathrm{k}(\mathrm{p}(\mathrm{x}))=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{k}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{k} \mathrm{a}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{i}} .
$$

- The zero polynomial is denoted $\mathbf{0}$. Note that $\mathbf{0}=0$, but we use $\mathbf{0}$ to emphasize that it is the zero vector of \mathcal{P}.

Definition (continued)

- Scalar Multiplication. Suppose $\mathrm{p} \in \mathcal{P}$ and $\mathrm{k} \in \mathbb{R}$. Then

$$
\mathrm{p}(\mathrm{x})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}},
$$

and

$$
(\mathrm{kp})(\mathrm{x})=\mathrm{k}(\mathrm{p}(\mathrm{x}))=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{k}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}\right)=\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\mathrm{k} \mathrm{a}_{\mathrm{i}}\right) \mathrm{x}^{\mathrm{i}} .
$$

- The zero polynomial is denoted $\mathbf{0}$. Note that $\mathbf{0}=0$, but we use $\mathbf{0}$ to emphasize that it is the zero vector of \mathcal{P}.

Remark

Note that this definition ensures that \mathcal{P} is closed under scalar multiplication.

Example

The set of polynomials \mathcal{P}, with addition and scalar multiplication as defined, is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example

The set of polynomials \mathcal{P}, with addition and scalar multiplication as defined, is a vector space. It is left as an exercise to verify the ten vector space axioms.

Example

For $\mathrm{n} \geq 1$, let \mathcal{P}_{n} denote the set of all polynomials of degree at most n , along with the zero polynomial, with addition and scalar multiplication as in \mathcal{P}, i.e.,
$\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \mid a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, a_{n} \in \mathbb{R}\right\}$.
Then \mathcal{P}_{n} is a vector space, and it is left as an exercise to verify the \mathcal{P}_{n} is closed under addition and scalar multiplication, and satisfies the ten vector space axioms.

What is a vector space?

Example one - Matrices

Example Two - Polynomials

More Examples

More Examples

More Examples

Problem

Let $\mathrm{V}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

More Examples

Problem

Let $\mathrm{V}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \in \mathrm{V}$, and $\mathrm{a}, \mathrm{b} \in \mathbb{R}$:

1. Addition. $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}+1\right)$.

More Examples

Problem

Let $\mathrm{V}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \in \mathrm{V}$, and $\mathrm{a}, \mathrm{b} \in \mathbb{R}$:

1. Addition. $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}+1\right)$.
2. Scalar Multiplication. $\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{ax}_{1}, \mathrm{ay}_{1}+\mathrm{a}-1\right)$.

More Examples

Problem

Let $\mathrm{V}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathbb{R}\}$, with addition \oplus and scalar multiplication \odot defined as follows:

For $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \in \mathrm{V}$, and $\mathrm{a}, \mathrm{b} \in \mathbb{R}$:

1. Addition. $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}+1\right)$.
2. Scalar Multiplication. $\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{ax}_{1}, \mathrm{ay}_{1}+\mathrm{a}-1\right)$.

Show that V, with addition and scalar multiplication as defined, is a vector space.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.

3 . What is the additive identity?

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}$?

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}$?
5. Verify that $(\mathrm{a}+\mathrm{b}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)$.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}$?
5. Verify that $(\mathrm{a}+\mathrm{b}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)$.
6. Verify that $\mathrm{a} \odot\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{a} \odot\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)$.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}$?
5. Verify that $(\mathrm{a}+\mathrm{b}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)$.
6. Verify that $\mathrm{a} \odot\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{a} \odot\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)$.
7. Verify that $\mathrm{a} \odot\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)=(\mathrm{ab}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

Proof.

1. It is clear that V is closed under \oplus and \odot, since both operations produce ordered pairs of real numbers.
2. It is routine to verify that \oplus is commutative and associative.
3. What is the additive identity?
4. What is the additive inverse of $(\mathrm{x}, \mathrm{y}) \in \mathrm{V}$?
5. Verify that $(\mathrm{a}+\mathrm{b}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)$.
6. Verify that $\mathrm{a} \odot\left(\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \oplus\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)=\left(\mathrm{a} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right) \oplus\left(\mathrm{a} \odot\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right)$.
7. Verify that $\mathrm{a} \odot\left(\mathrm{b} \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right)=(\mathrm{ab}) \odot\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
8. Verify that $1 \odot(x, y)=(x, y)$.

Problem

Let \mathbb{R}_{+}be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

Problem

Let \mathbb{R}_{+}be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $\mathrm{x}, \mathrm{y} \in \mathbb{R}_{+}$, and $\mathrm{a} \in \mathbb{R}$:

1. Addition. $\mathrm{x} \oplus \mathrm{y}=\mathrm{xy}$.

Problem

Let \mathbb{R}_{+}be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $\mathrm{x}, \mathrm{y} \in \mathbb{R}_{+}$, and $\mathrm{a} \in \mathbb{R}$:

1. Addition. $\mathrm{x} \oplus \mathrm{y}=\mathrm{xy}$.
2. Scalar Multiplication. $a \odot x=x^{a}$.

Problem

Let \mathbb{R}_{+}be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $\mathrm{x}, \mathrm{y} \in \mathbb{R}_{+}$, and $\mathrm{a} \in \mathbb{R}$:

1. Addition. $\mathrm{x} \oplus \mathrm{y}=\mathrm{xy}$.
2. Scalar Multiplication. $a \odot x=x^{a}$.

Prove that \mathbb{R}_{+}equipped with \oplus and \odot is a vector space.

Problem

Let \mathbb{R}_{+}be the set of positive reals. Let the addition \oplus and the scalar multiplication \odot defined as follows:

For $\mathrm{x}, \mathrm{y} \in \mathbb{R}_{+}$, and $\mathrm{a} \in \mathbb{R}$:

1. Addition. $\mathrm{x} \oplus \mathrm{y}=\mathrm{xy}$.
2. Scalar Multiplication. $\mathrm{a} \odot \mathrm{x}=\mathrm{x}^{\mathrm{a}}$.

Prove that \mathbb{R}_{+}equipped with \oplus and \odot is a vector space.

Proof.
Verify ten properties in the Axioms!

Problem

1. Let $C([0,1])$ be the set of continuous functions defined on $[0,1]$ equipped with usual addition and scalar multiplication. Prove that $\mathrm{C}([0,1])$ is a vector space.
2. Let $\mathrm{C}^{\mathrm{n}}([0,1])$ be the set of functions that have continuous nth derivatives $(\mathrm{n} \geq 0)$ defined on $[0,1]$, equipped with usual addition and scalar multiplication. Prove that $\mathrm{C}^{\mathrm{n}}([0,1])$ is a vector space.

Problem

1. Let $C([0,1])$ be the set of continuous functions defined on $[0,1]$ equipped with usual addition and scalar multiplication. Prove that $\mathrm{C}([0,1])$ is a vector space.
2. Let $\mathrm{C}^{\mathrm{n}}([0,1])$ be the set of functions that have continuous nth derivatives $(\mathrm{n} \geq 0)$ defined on $[0,1]$, equipped with usual addition and scalar multiplication. Prove that $\mathrm{C}^{\mathrm{n}}([0,1])$ is a vector space.

Proof.
Verify ten properties in the Axioms!

